A tail dependence-based dissimilarity measure for financial time series clustering
نویسندگان
چکیده
In this paper we propose a clustering procedure aimed at grouping time series with an association between extremely low values, measured by the lower tail dependence coefficient. Firstly, we estimate the coefficient using an Archimedean copula function. Then, we propose a dissimilarity measure based on tail dependence coefficients and a two-step procedure to be used with clustering algorithms which require that the objects we want to cluster have a geometric interpretation. We show how the results of the clustering applied to financial returns could be used to construct defensive portfolios reducing the effect of a simultaneous financial crisis.
منابع مشابه
Common Dissimilarity Measures are Inappropriate for Time Series Clustering
Clustering algorithms have been actively used to identify similar time series, providing a better understanding of data. However, common clustering dissimilarity measures disregard time series correlations, yielding poor results. In this paper, we introduce a dissimilarity measure based on series partial autocorrelations. Experiments compare hierarchical clustering algorithms using the common d...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملClustering Symbolic Time-Series using L-tuples
Among the many dimensionality reduction methods for timeseries data, Symbolic Aggregate approXimation (SAX) is perhaps the most popular due to its simplicity and uniqueness. With SAX, time-series data can be represented as string sequences which enables the utilization of methods found in text mining and bioinformatics to enhance data mining tasks. We propose an application of L-tuples to impro...
متن کاملAsset returns and volatility clustering in financial time series
An analysis of the stylized facts in financial time series is carried out. We find that, instead of the heavy tails in asset return distributions, the slow decay behaviour in autocorrelation functions of absolute returns is actually directly related to the degree of clustering of large fluctuations within the financial time series. We also introduce an index to quantitatively measure the cluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Data Analysis and Classification
دوره 5 شماره
صفحات -
تاریخ انتشار 2011